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Abstract

We propose a new two-level economical conservative scheme for short-range wake field calculation in three dimen-

sions. The scheme does not have dispersion in the longitudinal direction and is staircase free (second order convergent).

Unlike the finite-difference time domain method (FDTD), it is based on a TE/TM like splitting of the field components

in time. Additionally, it uses an enhanced alternating direction splitting of the transverse space operator that makes the

scheme computationally as effective as the conventional FDTD method. Unlike the FDTD ADI and low-order Strang

methods, the splitting error in our scheme is only of fourth order. As numerical examples show, the new scheme is much

more accurate on the long-time scale than the conventional FDTD approach.

� 2005 Published by Elsevier Inc.

Keywords: Maxwell�s equations; FDTD; ADI; Finite integration; Conformal; Wake field
1. Introduction

External electromagnetic (EM) fields are used to store and accelerate beams of charged particles. How-

ever, the particles themselves are field sources. When traversed by charged particles, cross-section variations

of the vacuum chamber wall generate EM fields which are called wake fields since they remain usually be-
hind the exciting particles. These wake fields influence the motion of trailing particles that may lead to beam

instabilities [1]. Without good knowledge of these wake fields and of their interactions, an accelerator can

hardly be operated at the desired top performance. The only practical way of calculating and studying the

EM fields in real structures is the application of numerical methods. The first numerical codes were
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developed at the end of the seventies [2,3]; later on a lot of sophisticated computer codes based on several

numerical techniques have been elaborated.

However, the computation of wakes of short relativistic bunches in long structures remains a challenging

problem even with the fastest computers available. It demands developing new numerical approaches for

long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional
FDTD scheme [4], used in MAFIA [5], TBCI [6] and other wake and particle-in-cell (PIC) codes, suffers

from numerical grid dispersion and the staircase approximation problem.

Several approaches [7–10] have been proposed to reduce the accumulated dispersion error of large-scale

three-dimensional simulations for all angles and for a given frequency range. These methods require the

usage of larger spatial stencils and a special treatment of the material interfaces. The increased computa-

tional burden justifies itself for computational domains large in all three dimensions. However, in the accel-

erator applications the domain of interest is very long in the longitudinal direction and relatively short in the

transverse plane. Additionally, the electromagnetic field changes very fast in the direction of bunch motion
but is relatively smooth in the transverse plane. Hence, it is extremely important to eliminate the dispersion

error in the longitudinal direction for all frequencies. As well known, the FDTDmethod at the Courant limit

is dispersion free along grid diagonals and this property can be used effectively in numerical simulations [11].

However, the only reasonable choice in this case is to take equal mesh steps in all three directions.

Alternatively, a semi-implicit numerical scheme without dispersion in the longitudinal direction with a

simpler conformal treatment of material interfaces and the usage of non-equidistant grids has been devel-

oped in [12–15].

The scheme described in [13] allows to solve the scalar problem and calculate the wake potential for fully
axially symmetric problems with staircase approximation of the boundary. In [14,15], a three-level confor-

mal (second order convergent) scheme
Rðynþ1 � 2yn þ yn�1Þ þ Ayn ¼ fn
for the vectorial problem was suggested. The scheme is based on a vector potential formulation and allows

an economical realization for axially symmetric geometries. However, the operator R in the scheme is not

self-conjugate; and therefore an ‘‘energy’’ conservation cannot be proved theoretically by the standard tech-

niques [16]. Additionally, the scheme is not economical for general three-dimensional geometries. The last

drawback can be overcome by splitting methods [17]. However, the absence of a theoretical proof for an

energy conservation has stimulated us to look for an alternative approach in the three-dimensional case.

In this paper, a new two-level economical conservative scheme for short-range wake field calculations in
three dimensions is presented. The scheme does not have dispersion in the longitudinal direction and is

staircase free (second order convergent). Unlike the FDTD method [4] and the scheme developed in

[14,15], the new method is based on a TE/TM (‘‘transversal electric–transversal magnetic’’) like splitting

of the field components in time. Additionally, it uses an enhanced alternating direction splitting of the

transverse space operator that renders the scheme computationally as effective as the conventional FDTD

method. Unlike the FDTD ADI [18] and low-order Strang [19] methods, the splitting error in our scheme is

only of fourth order. Numerical examples show that the new scheme is much more accurate in long-time

simulations than the conventional FDTD approach. For axially symmetric geometries, the new scheme
performs at least two times faster than the scheme suggested in [14,15] while achieving the same level of

accuracy.
2. Formulation of the problem

At high energies the particle beam is rigid. To obtain the wake field, the Maxwell equations can be solved

with a rigid particle distribution. The influence of the wake field on the particle distribution is neglected
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here; thus, the beam-surroundings system is not solved self-consistently and a mixed Cauchy problem for

the situation shown in Fig. 1 should be considered.

The problem reads: for a bunch moving with the velocity of light c and characterized by a charge

distribution q find the electromagnetic field ~E; ~H in a domain X which is bounded transversally by a perfect

conductor oX. The bunch introduces an electric current~j ¼~cq and thus we have to solve for
r� ~H ¼ o

ot
~Dþ~j; r�~E ¼ � o

ot
~B;

r � ~D ¼ q; r �~B ¼ 0;

~H ¼ l�1~B; ~D ¼ e~E; x 2 X;

~Eðt ¼ 0Þ ¼ ~E0; ~Hðt ¼ 0Þ ¼ ~H 0; x 2 �X;

~n�~E ¼ 0; x 2 oX;

ð1Þ
where ~E0; ~H 0 is an initial electromagnetic field in domain X.
The shape of the field distribution of a relativistic point charge q in free space resembles a pancake mov-

ing with the charge. For the charge moving along the z-axis only two field components are presented in
cylindrical coordinates (z, r,h) [20]
~E
0;q

r ð~r; tÞ ¼ c~B
0;q

h ð~r; tÞ ¼ Z0q
2pr

dðz� ctÞ:
Hence, the free space field for the linear charge distribution q (z, r,h, t) = d(r)qz(z � ct) reads:
~E
0

r ð~r; tÞ ¼
Z0

2pr
qzðz� ctÞ; c~B

0

hð~r; tÞ ¼ ~E
0

r ð~r; tÞ:
For a bunch q(z, r,h, t) = d(a)d(h)qz(z � ct) moving at an offset a from the z-axis the free space field can

be written in the form
~E
0

r ð~r; tÞ ¼
Z0

2p
qzðz� ctÞðr � a cos hÞ
a2 þ r2 � 2ar cos h

; ~E
0

hð~r; tÞ ¼
Z0

2p
qzðz� ctÞa sin h

a2 þ r2 � 2ar cos h
;

cB0
r ð~r; tÞ ¼ �~E0

hð~r; tÞ; cB0
hð~r; tÞ ¼ ~E

0

r ð~r; tÞ:
ð2Þ
In accelerator applications, the studied structure is usually supplied by ingoing pipe and the analytical

solution in a perfectly conducting cylindrical pipe [20] can be used as initial condition
~E0;rð~r; 0Þ ¼ ~E
0

r ð~r; 0Þ þ
Z0

2p
qzðzÞað�ar þ b2 cos hÞ
b4 þ a2r2 � 2arb2 cos h

;

~E0;hð~r; 0Þ ¼ ~E
0

hð~r; 0Þ �
Z0

2p
qzðzÞab2 sin h

b4 þ a2r2 � 2arb2 cos h
;

cB0;hð~r; 0Þ ¼ ~E0;rð~r; 0Þ; cB0;rð~r; 0Þ ¼ �~E0;hð~r; 0Þ:

ð3Þ
If the ingoing pipe is not cylindrical the initial field can be found numerically.
Fig. 1. Charged particle bunch moving through an accelerating structure supplied with infinite pipes.
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3. Implicit TE/TM numerical scheme

3.1. Finite integration technique

Following the matrix notation of the finite integration technique (FIT) [21], the Cauchy problem (1) can
be approximated by the time-continuous matrix equations on a grid doublet ðG; eGÞ
Fig. 2.

the lon
C e
_ ¼ � d

dt
b
_
_

; C� h
_

¼ d

dt
d
_
_

þ j
_
_

;

S b
_
_

¼ 0; S� d
_
_

¼ q:

ð4Þ
completed by the discrete form of the material relations (constitutive equations)
e
_ ¼ Me�1 d

_
_

; h
_

¼ Ml�1 b
_
_

with the discrete inverse permittivity matrixMe�1 and the inverse permeability matrix Ml�1 . In the following

the material matrices are assumed to be real and symmetric.

On Cartesian {x,y,z}-coordinate grids (like the Cartesian grid shown in Fig. 2) with an appropriate
indexing scheme the curl matrix has an 3 · 3 block structure:
C ¼
0 �Pz Py

Pz 0 �Px

�Py Px 0

0B@
1CA:
The two-banded topological P{x, y, z}-matrices play the role of discrete partial differential-operators [22].

With changing of variables e ¼ M
�1=2

e�1 e
_
; h ¼ M

�1=2

l�1 h
_

; j ¼ c�1M
1=2

e�1 j
_
_

, s = ct, system (4) reduces to the

skew-symmetric one
d

ds
e ¼ C�

0hþ j;
d

ds
h ¼ �C0e ð5Þ
with a new ‘‘discrete curl’’ matrix
Positions of the relativistic charged particle in the FIT grid in different moments of time. The scaled time step is chosen equal to

gitudinal mesh step.
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C0 ¼ c�1M
1=2

l�1CM
1=2

e�1 ¼ c�1

0 �M
1=2

l�1
x
PzM

1=2

e�1
y

M
1=2

l�1
x
PyM

1=2

e�1
z

M
1=2

l�1
y
PzM

1=2

e�1
x

0 �M
1=2

l�1
y
PxM

1=2

e�1
z

�M
1=2

l�1
z
PyM

1=2

e�1
x

M
1=2

l�1
z
PxM

1=2

e�1
y

0

0BBB@
1CCCA�

0 �P0
z P0

y

P1
z 0 �P0

x

�P1
y P1

x 0

0B@
1CA:
System (5) is a time-continuous and space-discrete approximation of problem (1). The next step is a discret-

ization of the system in time. The field components can be split in time and the ‘‘leap-frog’’ scheme can be

applied. Below, two kinds of the splitting are considered: E/M and TE/TM schemes.

3.2. Explicit FDTD method based on ‘‘electric–magnetic’’ splitting of the field components in time

Suggested by Yee [4], the E/M (‘‘electric–magnetic’’) splitting of the field components yields the explicit

FDTD scheme (E/M scheme)
enþ0:5 ¼ en�0:5 þ DsC�
0h

n þ Dsjn; hnþ1 ¼ hn � DsC0e
nþ0:5 ð6Þ
where Ds is the time step and the update of the electric components is shifted by 0.5Ds relative to update of

the magnetic components.

Scheme (6) is a two-layer scheme
B
ynþ1 � yn

Ds
þ Ayn ¼ fn; ð7Þ
where
B ¼
I 0

DsC0 I

� �
;A ¼

0 �C�
0

C0 0

� �
; yn ¼

en�0:5

hn

� �
; fn ¼

jn

0

� �
:

We study the stability of scheme (7) by the energy inequalities method [16]. Let us take the inner product

of both sides in Eq. (7) with yn + 1 + yn:
hBðynþ1 � ynÞ; ynþ1 þ yni þ DshAyn; ynþ1 þ yni ¼ hDsfn; ynþ1 þ yni: ð8Þ

Using the formula
yn ¼ 0:5ððynþ1 þ ynÞ � ðynþ1 � ynÞÞ

we rewrite relation (8) in the form
h½B� 0:5DsA�ðynþ1 � ynÞ; ynþ1 þ yni þ 0:5DshAðynþ1 þ ynÞ; ynþ1 þ yni ¼ hDsfn; ynþ1 þ yni:

The second term in the left-hand side is equal to zero since the operator A is skew-symmetric and,

therefore,
hQynþ1; ynþ1i � hQyn; yni ¼ hDsfn; ynþ1 þ yni;

where the self-adjointness of the operator Q ” B � 0.5DsA is used.

The last relation allows to prove

Theorem 1. The condition
Q � B� 0:5DsA P 0 ð9aÞ

is necessary and sufficient for the stability in the Hilbert space HQ (see [16]) of scheme (8) with respect to the

initial data y0 and the right-hand side fn. For a solution of problem (8) the a priori estimate holds
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kynþ1kQ 6 kynkQ þ
Xn
k¼0

CkfkkQ: ð9bÞ
Following [23,24], a discrete energy of electromagnetic fields can be defined as
En
E=M ¼ 0:5h½B� 0:5DsA�yn; yni ¼ 0:5ðhen�0:5; en�0:5i þ hhn; hn�1iÞ: ð10Þ
Note that this energy has a close correspondence to the total physical energy of the continuous electro-

magnetic fields given by 0.5�V(ejEj2 + l�1jBj2) dv. If the right-hand side in scheme (7) is zero then the

scheme is energy conserving
En
E=M ¼ E0

E=M:
The condition (9a) can be rewritten as
s2

4
C0C

�
0I or Ds

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ki

p ;
where {ki} are eigenvalues of the matrix C0C
�
0.

The last inequalities are direct corollaries of

Lemma 1. Let us define a matrix eA by relation
eA ¼
0 A

A� 0

� �

For the square matrix A the conditions

(a) Iþ eA P 0 and

(b) I � A*A P 0

are equivalent.

Indeed, the set fkeAi g of eigenvalues of the matrix eA can be written in the form
fkeAi g ¼
ffiffiffiffiffiffiffiffiffi
kA

�A
i

q� �
� �

ffiffiffiffiffiffiffiffiffi
kA

�A
i

q� �
;

where fkA�A
i g is a set of eigenvalues of the non-negative self-conjugate matrix A*A. Hence, both relations

(a) and (b) hold simultaneously.

It was proven in [24] that relation (9a), (9b) holds if
Ds 6 c�1 min
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnen

Dx�2
n þ Dy�2

n þ Dz�2
n

s
; n ¼ ði; j; kÞ: ð11Þ
Scheme (6) is widely used in electromagnetic modeling. However, the FDTD algorithm causes non-

physical dispersion of the simulated waves in a free-space computational lattice. The phase velocity of

discrete wave modes can differ from the light velocity by an amount varying with the wavelength, direc-

tion of propagation in the grid and grid discretization. With an equidistant mesh, a homogenous material

and the time step equal to the right-hand side of inequality (11), the scheme has zero dispersion along the

grid diagonals. Hence, the zero dispersion in a desired direction can be achieved by rotation of the mesh.

However, this approach awakes limitations on discretization: the only reasonable choice in this case is
to take equal mesh steps in the all three directions. The next difficulty arises with the attempt to use

a conformal method.
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Why is zero dispersion for a special direction important? Unlike plasma problems, the charged particles

in accelerators are organized and a direction of motion (the longitudinal direction) can be identified. Hence,

the computational domain is very long in the longitudinal direction and relatively short in the transverse

plane. Additionally, the electromagnetic field changes very fast in the direction of motion but is relatively

smooth in the transverse plane.
Note also that to be able to model smooth transitions in geometry we should use a conformal approach

without time step reduction [25].

3.3. Implicit FDTD method based on ‘‘transversal electric–transversal magnetic’’ splitting of the field

components in time

The arguments, stated in the preceding section, force us to look for a numerical scheme, which

– does not have dispersion in the longitudinal direction;

– allows the use of non-homogeneous meshes in the transverse plane;

– allows the use of a moving mesh without interpolations;

– allows accurate geometry modeling without a time step reduction.

In [14,15], a three-level implicit conformal scheme
Rðynþ1 � 2yn þ yn�1Þ þ Ayn ¼ fn
was suggested. The scheme is based on a vector potential formulation and allows an economical realization

for axially symmetric geometries. However, the absence of a theoretical proof for an energy conservation

has stimulated us to look for an alternative approach in the three-dimensional case.
To find an alternative scheme, let us consider Fig. 2 and subdue an update procedure to the motion of

the bunch. We suggest that a charged particle is moving in the z-direction with velocity of light. Addition-

ally, let us suggest that our numerical scheme allows to take a time step Ds equal to the mesh step z in the

z-direction. If at the time s0 the particle has the position aligned with the left z-facet of the primary grid (see

Fig. 2), then at time s0 + 0.5Ds it will be aligned with the left z-facet of the dual grid and in the time s0 + Ds
it will be again aligned with the next z-facet of the primary grid. This suggests that we should replace the E/

M time splitting of the field components in scheme (6) by a more adequate TE/TM splitting. Indeed, at time

s0 it is reasonable to update the ‘‘TE’’ components ex, ey, hz and half a time step later, namely at time
s0 + 0.5Ds, we have to update the ‘‘TM’’ components hx, hy, ez.

Following these consideration, let us rewrite scheme (5) in the equivalent form
d

ds
u ¼ D11uþD12vþ ju;

d

ds
v ¼ D22vþD21uþ jv ð12Þ
where
D11 ¼

0 0 �P0
y

0 0 P0
x

P0
y

� ��
� P0

x

� 	�
0

0BB@
1CCA; D22 ¼

0 0 �ðP1
yÞ

�

0 0 ðP1
xÞ

�

P1
y �P1

x 0

0B@
1CA;

D12 ¼ �D�
21 ¼

0 P0
z 0

�P1
z 0 0

0 0 0

0B@
1CA; u ¼

hx

hy

ez

0B@
1CA; v ¼

ex

ey

hz

0B@
1CA; ju ¼

0

0

�jz

0B@
1CA; jv ¼

�jx

�jy

0

0B@
1CA:
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Applying the suggested TE/TM splitting of the field in time to system (12), the following numerical

scheme is obtained
unþ0:5 � un�0:5

s
¼ D11

unþ0:5 þ un�0:5

2
þD12v

n þ jnu; ð13aÞ

vnþ1 � vn

s
¼ D22

vnþ1 þ vn

2
þD21u

nþ0:5 þ jnþ0:5
v ð13bÞ
Just like scheme (6), scheme (13a), (13b) is also a two-layer one
B
ynþ1 � yn

Ds
þ Ayn ¼ fn; ð14Þ
where
B ¼
I� 0:5sD11 0

DsD�
12 I� 0:5DsD22

� �
;A ¼

�D11 �D12

D�
12 �D22

� �
; yn ¼

un�0:5

vn

� �
; fn ¼

jnu

jnþ0:5
v

� �
:

Analyzing relations (14) we conclude that just as for the Yee�s scheme the following relations hold
A ¼ �A�;Q ¼ Q�;Q ¼ B� 0:5DsA:
Likewise we can prove

Theorem 2. The condition (9a) is necessary and sufficient for the stability in space HQ of scheme (14) with

respect to the initial data y0 and to the right-hand side fn. For a solution of problem (14) the a priori estimate

(9b) holds.

As for the E/M scheme the discrete energy in the TE/TM scheme can be defined by the relation
En
TE=TM ¼ 0:5 ½B� 0:5DsA�yn; ynh i ¼ En

E=M þOðDs2Þ:
Note that the energy En
TE=TM, just like the energy En

E=M defined by relation (10), is a second order accurate

approximation to the total physical energy of the continuous electromagnetic field. If the right-hand side in

scheme (14) vanishes, the scheme is energy conserving:
En
TE=TM ¼ E0

TE=TM:
Due to Lemma 1 stability condition (9a), (9b) can be rewritten in the form
I� Ds2

4
D12D

�
12 P 0 or I� Ds2

4
Pi

z Pi�

z

� 	
P 0; i ¼ 0; 1: ð15Þ
The last relation resembles the well-known stability condition of the explicit FDTD scheme for the one-

dimensional problem. In the following an equal mesh step Dz in the z-direction will always be assumed.

Then for a vacuum domain with staircase approximation of the boundary the stability condition reads
Ds 6 Dz: ð16Þ
With the time step Ds equal to the longitudinal mesh step Dz, scheme (13a), (13b) does not have disper-

sion in the longitudinal direction. Relation (15) does not contain information about the transverse mesh.

Hence, the transverse mesh can be chosen independently from stability considerations.

For a relativistic bunch a mesh moving together with the bunch can be used. The field ahead of the

bunch is zero and, as the scaled time step is equal to the longitudinal mesh step, the complete information

for updating of the last mesh layer is available, too. It means that interpolation procedures are avoided and

the dispersion in the longitudinal direction is equal to zero. The results with the moving mesh for staircase
approximation of the geometry are fully equivalent to the stationary global mesh approach.
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So far we have found a scheme which with staircase geometry approximation fulfills the first three

requirements formulated above. However, in a general case the staircase scheme is only first order accurate.

In order to overcome this problem and avoid reduction of the stable time step, the uniformly stable

conformal (USC) approach described in [15,25] will be used.

With the latter approach the scheme possesses the desired features. However, it is implicit and non-
economical. The economical scheme modifications, based on operator splitting, will be considered in the

next sections.
4. An economical TE/TM scheme based on transverse operator splitting

4.1. Crank–Nicholson scheme for two-dimensional scalar wave equation as a basic part of the TE/TM scheme

In the following it is assumed that the transverse current jnþ0:5
v � 0 and only relation (13b) for ‘‘TE’’-com-

ponents is treated. It can be rewritten in the form
I� 0:5DsD22ð Þ v
nþ1 � vn

Ds
¼ D22v

n �D�
12u

nþ0:5; ð17Þ
where
I� 0:5DsD22ð Þ ¼
I 0 0:5DsðP1

yÞ
�

0 I �0:5DsðP1
xÞ

�

�0:5sP1
y 0:5DsP1

x I

0B@
1CA ð18Þ
Elimination of non-diagonal elements in the last row of matrix (18) in scheme (17) leads to
enþ1
x � enx
Ds

¼ P1
z

� 	�
hnþ0:5
y � ðP1

yÞ
� h

nþ1
z þ hnz

2
; ð19aÞ

enþ1
y � eny

Ds
¼ � P0

z

� 	�
hnþ0:5
x þ ðP1

xÞ
� h

nþ1
z þ hnz

2
; ð19bÞ

Iþ Ds2

4
P1

yðP1
yÞ

� þ Ds2

4
P1

x P1
x

� 	�� �
hnþ1
z � hnz
Ds

¼ P1
y

enx þ s
2

P1
z

� 	�
hnþ0:5
y � ðP1

yÞ
�
hnz

h i� �
þ P1

x �eny �
Ds
2

� P0
z

� 	�
hnþ0:5
x þ ðP1

xÞ
�
hnz


 �� �
: ð19cÞ
If the vector hnþ1
z is known, than the first two update equations are explicit ones. The vector hnþ1

z can be

found from the third equation, whose solution demands inversion of the matrix
WCN ¼ Iþ Ds2

4
Aþ Ds2

4
B; A ¼ P1

yðP1
yÞ

�
; B ¼ P1

xðP1
xÞ

�
:

Eliminating the electric field, Eq. (19c) can be reduced to the form:
WCN

hnþ1
z � 2hnz þ hn�1

z

Ds2
¼ �ðAþ BÞhnz þ Fn; ð20Þ

Fn ¼ P1
yðP1

z Þ
� h

nþ0:5
y þ hn�0:5

y

2
þ P1

x P0
z

� 	� hnþ0:5
x þ hn�0:5

x

2
: ð21Þ
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If we assume that vector Fn is known for all time steps, than Eq. (20) can be identified as the implicit Crank–

Nicholson scheme [16] for the two-dimensional wave equation
o2lzHz

os2
¼ o

ox
e�1
y

o

ox
þ o

oy
e�1
x

o

oy

� �
Hz þ F ; ~r 2 X ð22Þ
with appropriate boundary conditions on boundary oX.
Of course Fn is an unknown vector and should be calculated from the already known ‘‘TM’’-compo-

nents. However, the stability of the scheme (20) with Fn ” 0 is a necessary stability condition to be fulfilled.

In the next section we are looking for an economical implicit scheme for the two-dimensional scalar wave
equation (22) describing the excitation of TE-modes in homogenous waveguides.

4.2. Splitting schemes for two-dimensional scalar wave equation

In order to find an economical scheme three different schemes based on a splitting of the operator WCN

will be considered.

For the first method we consider the alternating-direction implicit scheme (ADI) [16,26]. Inserting the

relation
WCN ¼ WADI � Rn
ADI; WADI ¼ Iþ Ds2

4
A

� �
Iþ Ds2

4
B

� �
; RADI ¼

Ds4

16
AB
into Eq. (20) leads to the equivalent scheme
WADI

hnþ1
z � 2hnz þ hn�1

z

Ds2
¼ �ðAþ BÞhnz þ Fn þ ~R

n

ADI; ð23Þ

~R
n

ADI ¼ RADI

hnþ1
z � 2hnz þ hn�1

z

Ds2
;

where the term ~R
n

ADI ¼ OðDs4Þ and can be neglected by introducing a splitting error. Note that the splitting

error ~R
n

ADI is two orders lower than the approximation error of the scheme.

Scheme (23) without the term ~R
n

ADI ¼ OðDs4Þ
Iþ Ds2

4
A

� �
Iþ Ds2

4
B

� �
hnþ1
z � 2hnz þ hn�1

z

Ds2
¼ �ðAþ BÞhnz þ Fn ð24Þ
will be referred as ADI(0) scheme and for the case of diagonal material matrices Ml�1 ; Me�1 it requires only

solving two systems with tri-diagonal matrices.

Unfortunately, scheme (24) is unconditionally stable only for a rectangular domain X, when the opera-

tors A and B are commutative [16]. For an arbitrarily shaped domain X the operator WADI is not self-

conjugate and the scheme can become unstable even for the time step Ds equal to the minimal mesh step.

To overcome the problem we can retain the term ~R
n

ADI and use an iterative scheme with a small number of

iterations. The last method will be called ADI(p), where p represents the number of iterations.
Considering an alternative splitting of the operator
WCN¼WADI2�RADI2; WADI2¼ Iþ0:5Ds2

4
A

� �
IþDs2

4
B

� �
Iþ0:5Ds2

4
A

� �
�RADI2; RADI2¼OðDs4Þ;
the scheme
WADI2

hnþ1
z � 2hnz þ hn�1

z

Ds2
¼ �ðAþ BÞhnz þ Fn; ð25Þ
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with the self-conjugate operator WADI2 is obtained. The R
n
ADI2 term is neglected in the scheme and the latter

will be referred to as ADI2. It is also only conditionally stable. But (as verified by numerical experiments) it

is stable for larger time steps than the ADI scheme. The second advantage is self-conjugateness of the oper-

ator WADI2.

In an attempt to find an unconditionally stable economical scheme for wave equation (20), we consider
the alternating triangular implicit scheme (ATI) based on the triangular splitting of the operator WCN [16]:
WCN ¼ Iþ Lþ L� ¼ WATI � RATI; WATI ¼ ðIþ LÞðIþ L�Þ; RATI ¼ LL� ¼ O
Ds4

D~rj j2

 !
;

where L is a lower triangular matrix. The ATI(0) scheme
ðIþ LÞðIþ L�Þ h
nþ1
z � 2hnz þ hn�1

z

Ds2
¼ �ðAþ BÞhnz þ Fn ð26Þ
is unconditionally stable. However, it approximates problem (20) only conditionally with error

OðDs2þ j D~rj2 þ Ds4

jD~rj2Þ under the approximation condition Ds ¼ oðj D~rj0:5Þ. Hence, with the choice
Ds ¼ Oðj D~r jÞ the approximation and splitting errors are of the same order. As in the ADI(p) method,

the term
~R
n

ATI ¼ RATI

hnþ1
z � 2hnz þ hn�1

z

Ds2
can be retained and the system can be solved iteratively with p iterations (ATI(p) method).

In order to check stability, accuracy and convergence of the introduced schemes we consider a test prob-

lem of free oscillations of the TE mode [27]
Hzðq; h; sÞ ¼ �J 1ðkqÞ cosðhÞ sinðksÞ; ka ¼ 5:33144; ð27Þ
in an infinite perfectly conducting cylinder X with radius a:
o

os
eEx ¼

o

oy
Hz;

o

os
eEy ¼ � o

ox
Hz; ð28Þ

o

os
lHz ¼

o

oy
Ex �

o

ox
Ey ; ~r 2 X; s 2 ð0; T �;

Hzðs ¼ 0Þ ¼ H 0
z ; Exðs ¼ 0Þ ¼ E0

x ; Eyðs ¼ 0Þ ¼ E0
y ; ~r 2 X;

~n�~E ¼ 0; ~r 2 oX; s 2 ½0; T �;
where the initial conditions follow from relation (27).

Problem (28) can be readily reduced to wave equation (22) with the Neumann boundary condition.

However, Eq. (22) allows a linearly growing in time solution not available for problem (28). In order to

avoid this complication we will solve system (28) directly and for this reason rewrite the schemes introduced

above in the form
enþ1
x � enx
Ds

¼ �ðP1
yÞ

� h
nþ1
z þ hnz

2
;

enþ1
y � eny

Ds
¼ ðP1

xÞ
� h

nþ1
z þ hnz

2
; ð29Þ
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W�
hnþ1
z � hnz
Ds

¼ P0
y enx �

Ds
2
ðP1

yÞ
�
hnz

� �
þ P0

x �eny �
Ds
2
ðP1

xÞ
�
hnz

� �
þ ~R

n

�;
where the pair hW�; ~R
n

�i is taken from the set
WCN; 0h i; WADI; ~R
n

ADI

D E
; WADI2; 0h i; WATI; ~R

n

ATI

D En o

and it is assumed that the function Fn vanishes.

The iterative ADI(p) and ATI(p) schemes take the form
W�h
nþ1;i
z ¼ eFn

þ ~R
n

�h
nþ1;i�1
z ; i ¼ 1; 2; . . . ; p; ð30Þ
where the initial value hnþ1;0
z is obtained from the scheme (29) by neglecting the term ~R

n

ADI or ~R
n

ATI,

correspondingly.
In the validation example we set the initial field in the entire calculation domain corresponding to the

analytically determined eigensolution (27) and start the time-stepping procedures. After a (sufficiently long)

period of time T ¼ 3a=
ffiffiffi
2

p
, we compare the numerical solution with the exact one. For simplicity a series of

equidistant meshes with the cell sizes Dx = Dy = h is used.

To achieve a smooth second order convergence for this and for the following numerical examples, a con-

formal approach for treating perfectly conducting boundaries is chosen. It means that the entries in the

permittivity and permeability matrices are changed near the boundary (see [15] and references therein

for details).
In the first example the time step is taken as Ds = h. The relative error of the numerical solution eH z
dðhÞ ¼
Hz � eH z

�� ��
2

Hzk k2

is shown in Fig. 3. The left figure shows the convergence rates for different non-iterative schemes. The ADI2

scheme (25) achieves the same rate of convergence as the Crank–Nicholson scheme (20). The ADI(0)
scheme is unstable. The ATI(0) scheme is stable but it can be seen from the right figure that at least one

more iteration (30), than for the ADI2 scheme, is required to achieve the same accuracy.

The Crank–Nicholson scheme conserves the Lh
2 norm of the solution [16]. Fig. 4 shows conservation of

the discrete energy
En
CN ¼ 0:5 hn; hnh i þ en; enh ið Þ
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Comparison of the convergence of different methods for the circle is shown. On the left picture the solid line corresponds to the
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d are shown. On the right figure an improvement of the convergence of the ATI(1) scheme (dashed line) compared to the ATI(0)

e (dotted line) is shown. The solid line describes results from CN method.
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Fig. 4. The discrete energy conservation by different methods is shown. The left figure shows results for the time step Ds = h. The right

figure presents the results for the time step Ds = 1.5h.
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in the schemes for the mesh resolution a/h = 10. The left figure presents the results for the time step Ds = h.

The energies are normalized and shifted in order to place them all on the same graph. The schemes ADI(0)

and ADI(1) are unstable. The discrete energy in other schemes oscillates near the mean value. The right

figure presents likewise the results for the time step Ds = 1.5h. As it can be seen from this figures, the
ADI2 scheme shows the best results.

However, as mentioned above the ADI2 scheme is only conditionally stable. It was tested in this example

and other geometries that a sufficient stability condition for the conformal ADI2 method can be written in

the form
minðDxi;DyjÞ P 0:5Ds: ð31Þ
In the following we will use the ADI2 splitting in TE/TM scheme (13a), (13b). For the reader interested

in elimination of restriction (31) (which indeed is a restriction on a mesh in the transverse plane) we propose
to use the TE/TM scheme in conjunction with the unconditionally stable ATI(p) method. However, this

possibility will not be studied in this paper. The next section describes only the realization of the ADI2

method in the TE/TM scheme.

4.3. TE/TM-ADI2 scheme in three dimensions

The numerical scheme using the ADI2 splitting in three dimension has the form
B
ynþ1 � yn

Ds
þ Ayn ¼ fn; ð32Þ
where
B ¼ I� 0:5DsD11 þ R1
ADI2 0

DsD�
12 I� 0:5DsD22 þ R2

ADI2

 !
;A ¼

�D11 �D12

D�
12 �D22

� �
;

yn ¼
un�0:5

vn

� �
; fn ¼

jnu

jnþ0:5
v

� �
:

As for the TE/TM scheme (13) the relations
A ¼ �A�; Q ¼ Q�; Q ¼ B� 0:5DsA;
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and Theorem 2 hold. However, the stable time step does now not only depend on the longitudinal mesh step

Dz but also on the minimal mesh step in the transverse plane. Hence, the stability conditions (16) and (31)

have to be combined in the common empiric inequality
Ds 6 minð2Dxi; 2Dyj;DzÞ: ð33Þ
The last condition does not reduce the applicability of the scheme, since the field is relatively smooth in the
transverse plane and a much coarser grid can be used here. As it was already mentioned, constraint (33) can

be relaxed and replaced by (16) if the ATI(p) method is used.

So far we have not defined the ADI2 terms in relation (32). Instead of doing this, let us rewrite scheme

(32) explicitly
h
_nþ0:5

x � h
_n�0:5

x

Ds
¼ Ml�1

x
Pz e

_n

y � Py
e
_nþ0:5

z þ e
_n�0:5

z

2

" #
; ð34aÞ

h
_nþ0:5

y � h
_n�0:5

y

Ds
¼ �Ml�1

y
Pz e

_n

x � Px
e
_nþ0:5

z þ e
_n�0:5

z

2

" #
; ð34bÞ

We
ADI2

e
_nþ0:5

z þ e
_n�0:5

z

2
¼ Me�1

z
P�

y h
_n�0:5

x þ Ds
2
Ml�1

x
Pz e

_n

y � Py e
_n�0:5

y

h i� �

þMe�1
z
P�

x �h
_n�0:5

y � Ds
2
Ml�1

y
�Pz e

_n

x þ Px e
_n�0:5

y

h i� �
þMe�1

z
j
_
_n�0:5

y ; ð34cÞ

e
_nþ1

x � e
_n

x

Ds
¼ Me�1

x
P�

z h
_nþ0:5

y � P�
y

h
_nþ1

z þ h
_n

z

2

24 35; ð35aÞ

e
_nþ1

y � e
_n

y

Ds
¼ �Me�1

y
P�

z h
_nþ0:5

x � P�
x

h
_nþ1

z þ h
_n

z

2

24 35; ð35bÞ

Wh
ADI2

hnþ1
z � hnz
Ds

¼ Ml�1
z
Py e

_n

x þ
Ds
2
Me�1

x
P�

z h
_nþ0:5

y � P�
y h
_n

z

 �� �
þMl�1

z
Px �e

_n

y �
Ds
2
Me�1

y
�P�

z h
_nþ0:5

x þ P�
x h
_n

z

 �� �
; ð35cÞ
where
Wh
ADI2 ¼ Iþ Ds2

8
Ml�1

z
PyMe�1

x
P�

y

� �
Iþ Ds2

4
Ml�1

z
PxMe�1

y
P�

x

� �
Iþ Ds2

8
Ml�1

z
PyMe�1

x
P�

y

� �
;

We
ADI2 ¼ Iþ Ds2

8
Me�1

z
P�

yMl�1
x
Py

� �
Iþ Ds2

4
Me�1

z
P�

xMl�1
y
Px

� �
Iþ Ds2

8
Me�1

z
P�

ybfMl�1
x
Py

� �
:

If material matrices Ml�1 ;Me�1 are diagonal, then systems (34c), (35c) have only products of tri-diagonal

matrices on the left-hand side and can be easily resolved. For example, Eq. (34c) leads to the set of

equations
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ðIþ 0:5AÞu1 ¼ Fn; ðIþ BÞu2 ¼ u1;

ðIþ 0:5AÞe_
nþ0:5

x ¼ ðIþ 0:5AÞe_
n�0:5

x þ u2;
ð36Þ
where the vector Fn denotes the right-hand side of Eq. (34c) and
A ¼ Ds2

4
Me�1

z
P�

yMl�1
x
Py ; B ¼ Ds2

4
Me�1

z
P�

xMl�1
y
Px: ð37Þ
However, the conformal scheme with the diagonal material matrices reduces the stable time step. To restore

stability condition (33) and the possibility to use the time step Ds = Dz, we will use a modification of the

uniformly stable conformal method [25] as described in detail in [15]. The last approach results in modified

non-diagonal but symmetric matricesMl�1
x
; Me�1

y
. Other material matrices in scheme (34), (35) remain diag-

onal. This means that we do not encounter difficulties in the resolution of Eq. (35c). However, resolving Eq.

(34c) requires additional efforts since the matrices (37) are not tri-diagonal.

To overcome the problem we modify system (36) as follows:
ðIþ 0:5A0Þu1 ¼ Fn � ðA1 þ B1Þðe
_nþ0:5

z � e
_n�0:5

z Þ;

ðIþ B0Þu2 ¼ u1; ðIþ 0:5A0Þe
_nþ0:5

z ¼ ðIþ 0:5A0Þe
_n�0:5

z þ u2;
ð38Þ
where
A0 ¼
Ds2

4
Me�1

z
P�

yM
0
l�1
x
Py ; B0 ¼

Ds2

4
Me�1

z
P�

xM
0
l�1
y
Px; A1 ¼ A� A0; B1 ¼ B� B0;
and M0
l�1
x
;M0

e�1
y

are diagonal parts of the material matrices. System (38) can be resolved iteratively
Gi ¼
0; i ¼ 0;

ðA1 þ B1Þðe
_nþ0:5;i�1

z � e
_n�0:5

z Þ; i > 0;

(
ðIþ 0:5A0Þui1 ¼ Fn þGi; ðIþ B0Þui2 ¼ ui1;

ðIþ 0:5A0Þe
_nþ0:5;i

z ¼ ðIþ 0:5A0Þe
_n�0:5

z þ ui2; i ¼ 0; 1; 2; . . . ; p:

ð39Þ
Note that the equation for zero iteration (which we refer to as TE/TM-ADI2(0)), just as schemes (36) and

(38), results in an approximation of the continuous problem (1) with the error OðjD~rj2 þ Ds2Þ. However, the

TE/TM-ADI2(0) scheme can show instability in general geometries for the required time step Ds = Dz. The
first iteration (which we refer as TE/TM-ADI2(1) scheme) solves the stability problem for all considered

cases.
In the next section, we will study properties of the scheme (32)–(39) for the case of rotationally symmet-

ric geometries. In the last section results for the fully three-dimensional scheme will be presented.
5. Verification of the TE/TM scheme

5.1. Realization of TE/TM and TE/TM-ADI2 schemes for rotationally symmetric geometries

In this section we describe the realization of the TE/TM scheme for the case of rotationally symmetric

geometries. We consider this case separately since the TE/TM scheme (13a), (13b) is already economical

and application of the splitting methods considered in the previous sections can be avoided.

For a bunch moving at speed of light c at an offset a from and parallel to the axis of a rotationally

symmetric structure, the source current~j can be represented as
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~j ¼~cqðz=c� tÞdðr � aÞ
pa

X1
m¼0

cosmu
1þ dm0

;

where q(s) is the longitudinal charge distribution and m is the azimuthal mode number.
Numerical scheme (13) for an azimuthal mode number m has the form
h
_nþ0:5

u � h
_n�0:5

u

Ds
¼ Mlu�1

Pz e
_n

r � Pr
e
_nþ0:5

z þ e
_n�0:5

z

2

" #
;

h
_nþ0:5

r � h
_n�0:5

r

Ds
¼ �Ml�1

r
Pz e

_n

u � m
e
_nþ0:5

z þ e
_n�0:5

z

2

" #
;

We
CN

e
_nþ0:5

z � e
_n�0:5

z

Ds
¼ Me�1

z
P�

r

h
_n�0:5

u þ s

2
Ml�1

u
Pz e

_n

r � Pr e
_n�0:5

z

h i0@ 1A
þMe�1

z
P�

u � h
_n�0:5

r � s
2

Ml�1
r

�Pz e
_n

u þ me
_n�0:5

z

h i0@ 1AþMe�1
z
j
_n

z ;

e
_nþ1

u � e
_

un

Ds
¼ Me�1

u
P�

z h
_nþ0:5

r � P�
r

h
_nþ1

z þ h
_n

z

2

24 35;
e
_nþ1

r � e
_n

r

Ds
¼ �Me�1

r
P�

z h
_nþ0:5

u � m
h
_nþ1

z þ h
_n

z

2

24 35;
Wh

CN

hnþ1
z � hnz
Ds

¼ Ml�1
z
Pr e

_n

u þ Ds
2
Me�1

u
P�

z h
_nþ0:5

r � P�
r h
_n

z

 �� �
þMl�1

z
Pu �e

_n

r �
Ds
2
Me�1

r
�P�

z h
_nþ0:5

u þ mh
_n

z

 �� �
;

ð40Þ

Wh
CN ¼ Iþ Ds2

4
Ml�1

z
PrMe�1

u
P�

r þ
Ds2

4
m2Ml�1

z
Me�1

r

� �
;

We
CN ¼ Iþ Ds2

4
Me�1

z
P�

rMl�1
u
Pr þ

Ds2

4
m2Me�1

z
Ml�1

r

� �
;

ð41Þ
and the fact that Pu = mI is used.

If the material matrices Ml�1 ; Me�1 are diagonal, then operators (41) are tri-diagonal matrices and equa-

tions involving them can be resolved easily. For the case of non-diagonal matrices Ml�1
u
; Ml�1

r
we will

proceed in the same way as described at the end of the previous section.
We rewrite the equation with the operator We

CN in the form
ðIþ A0 þ B0Þ e
_nþ0:5

z � e
_n�0:5

z

� �
¼ Fn � ðA1 þ B1Þðe

_nþ0:5

z � e
_n�0:5

z Þ; ð42Þ
where
A0 ¼
Ds2

4
Me�1

z
P�

rM
0
l�1
u
Pr; B0 ¼

Ds2

4
m2Me�1

z
M0

l�1
r
; A1 ¼ A� A0; B1 ¼ B� B0;
and M0
l�1
u
; M0

l�1
r

are diagonal parts of the material matrices. System (42) can be resolved iteratively
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Gi ¼
0; i ¼ 0;

ðA1 þ B1Þðe
_nþ0:5;i�1

z � e
_n�0:5

z Þ; i > 0;

(
ðIþ A0 þ B0Þe

_nþ0:5;i

z ¼ ðIþ A0 þ B0Þe
_nþ0:5

z þ Fn þGi; i ¼ 0; 1; 2; . . . ; p:

ð43Þ
Scheme (40)–(43) will be referred to as TE/TM(p). Note that just as for the TE/TM-ADI2(p) scheme, it is

sufficient to perform only one iteration (scheme TE/TM(1)) to obtain a stable solution.

As it was noted at the beginning of this section, for geometries of revolution we do not need to apply the

transverse operator splitting. However, to check the achieved accuracy the TE/TM-ADI2(p) scheme was

implemented for rotationally symmetric geometries, too.

As test example we consider free oscillations of the TM mode [27]
Huðr; h;u; sÞ ¼ k
ðkrÞ0:5

r
J 1:5ðkrÞ

o

oh
P 1
1ðcosðhÞÞ cosðuÞ sinðksÞ; Hrðr; h;u; sÞ ¼ 0;

H hðr; h;u; sÞ ¼ k
ðkrÞ0:5

r sinðhÞ J 1:5ðkrÞP 1
1ðcosðhÞÞ sinðuÞ sinðksÞ; ka ¼ 6:116764;
in the sphere of radius a = 1.
The initial field is converted to the cylindrical coordinates and set in the entire calculation domain. After

a period of time T ¼
ffiffiffi
2

p
a we compare the numerical solution with the exact one. A series of equidistant

meshes with the cell sizes r = z = h is used.

Fig. 5 shows the results for the time step Ds = Dz and for the mesh resolution a/h = 10. The left figure

shows convergence of the non-iterative schemes TE/TM(0) (40)–(43) and TE/TM-ADI2(0) (32)–(39). Both

schemes achieve the same rate of convergence. The right figure shows conservation of the discrete energy

En
TE=TM for the schemes. With an increase of the number of iterations p the discrete energy in the TE/TM(p)

scheme converges to the constant value of the non-iterative TE/TM scheme. However, in order to see the
same effect for the TE/TM-ADI2(p) scheme, the energy norm has to be changed to the one with operator Q

from the non-iterative scheme (32). We do not show this result here, since it already follows from the avail-

able figure that the considered schemes are stable for time step Ds = Dz, when they do not have dispersion

in the longitudinal direction.

As a further test example we use the circular collimator structure shown in Fig. 6 on the left (with inner

radius b not indicated in the figure). Fig. 7 shows the results for the dipole wake field (m = 1 ) and compares

the TE/TM scheme results to the ones obtained with the classical Yee�s scheme (E/M scheme). The latter

results are calculated with the help of code ABCI [28] (FDTD method with triangular approximation of
the boundary). The geometric parameters are a = 35 mm, L = 20 cm and b = c = 2 mm, where b is an inner

radius of the collimator.

The left figure in Fig. 7 shows the transversal dipole wake potential [1]
W 1
?ðsÞ ¼ W1

?ðs; r; h ¼ 0Þ
�� ��r�1; W1

?ðs; r; hÞ ¼
1

Q

Z 1

�1
E? þ ðv� BÞ?

 �

t¼ðzþsÞ=v dz
for the collimator with L = 20 cm and the relativistic Gaussian bunch with RMS length r = 1 mm. The

solid curves show the results for ABCI and the dashed ones present the results for the new scheme.

In the right figure the transversal dipole loss factor
L1
? ¼ 1

Q

Z 1

�1
W 1

?ðsÞqðsÞ ds
for the collimator is shown for different mesh resolutions r/h, where h = z = r is the mesh step. The error

compared to the reference value (obtained with the finest mesh resolution) is also shown in the figure.

The dashed line shows the results for the TE/TM code and the solid line for ABCI.
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Fig. 5. The left figure shows second order convergence of the TE/TM(0) (solid line) and TE/TM-ADI2(0) schemes for the sphere. The

right figure presents conservation of the discrete energy by different methods for Ds = Dz.
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From the above example we see that the absolute error for the new TE/TM scheme just as for scheme

[14,15] remains approximately on the same level independently from the length of the collimator. The

reference code ABCI demands a much more dense mesh for the same accuracy, strongly depending on

the collimator length.

Finally, we show in Fig. 8 (left) the dipole wake potentials of a Gaussian bunch with r = 1 mm for the

TESLA cryomodule of total length �11 m [29]. The cryomodule contains eight cavities and nine bellows

whose geometries are outlined in Fig. 9. The iris� radius is 35 mm and the beam tube�s radius is 39 mm.
Fig. 6. The geometry of round and rectangular collimators.
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Fig. 7. The transverse dipole wake function (left) and loss factor (right) for the collimator with L = 20 cm. The solid lines show the

results for the E/M scheme (Yee�s scheme) and the dashed lines display the results for the TE/TM scheme. The relative errors are given

regarding the reference value (marked as ref. on the graphs) calculated by the TE/TM method with the finest mesh.
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Fig. 8. The left figure shows the transverse wake potential for the TESLA cryomodule excited by the Gaussian bunch with RMS width

r = 1 mm as obtained from the reference code [15]. On the right figure the solid line shows the difference between the reference potential

and the one obtained with the help of the TE/TM(1) scheme and the dashed line shows likewise the result for the TE/TM-ADI2(1)

scheme.
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The moving mesh in the last example covers the bunch longitudinally in the range from �5r to 100r.
The length of the moving mesh is only 0.105 m which results in a drastically reduction of the computational

demands (storage and CPU time) compared to the stationary mesh of total length �11 m.

The right figure shows the difference between the results obtained by the TE/TM(1) and TE/TM-

ADI2(1) schemes and the reference result calculated with the vector potential method (POT-2.5) described

in [14,15]. The presented results are calculated with the mesh resolution Dz = Dr = r/5. It can be seen that

the new methods introduced in this paper produce numerical results of the same level of accuracy as the

vector potential method (POT-2.5). However, the TE/TM method is at least two times faster due to the
smaller number of required operations.

5.2. Numerical examples calculated with the three-dimensional TE/TM-ADI2 scheme

Finally, we discuss the results of numerical computations with the fully three-dimensional realization of

the TE/TM-ADI2(p) scheme (32)–(39). Two test problems are considered.
Fig. 9. The geometry of the TESLA cavity (bottom) and bellow (top).
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Before presentation of the numerical results we want to discuss shortly the realization of the scheme in

the code. To be able to calculate long structures, we should spare the computer memory and not keep all

geometric information. For this purpose we cut the long structure in short blocks, discritize them and keep

the geometric information in the external memory. The information will be loaded only at the instant when

the head of the bunch arrives at a geometric block and it will be deleted after bunch (together with the mov-
ing mesh) have passed through the block.

To be able to check the accuracy of the three-dimensional realization of the TE/TM scheme we have

chosen only rotationally symmetric structures for the numerical tests. However, in the three-dimensional

calculations the symmetry of the structures was not exploited.

In the first example we consider a structure consisting of the 20 TESLA cells [29] bounded by infinite

ingoing and outgoing pipes with diameter 35 mm. Analytical solution (3) was used as an initial condition

in the ingoing pipe.

Fig. 10 shows the longitudinal wake potential [1]
Fig. 10

Gauss

dashed

describ

coincid
W kðs; x; yÞ ¼ � 1

Q

Z 1

�1
½Ezðx; y; z; tÞ�t¼ðzþsÞ=m dz
for a Gaussian bunch with RMS length r = 1 mm moving on the axis. The solid line (POT-2.5D) corre-

sponds to the reference solution obtained with the vector potential method [15]. The two other lines show

results obtained with different mesh resolutions from the TBCI code [6] based on the classical Yee�s scheme

(E/M-2.5D). The oscillations, that appear, are due to the dispersion error of the Yee�s scheme. The gray
points present the result obtained by the three-dimensional scheme (32)–(39) (marked as TE/TM-3D).

It can be seen that the three-dimensional TE/TM-ADI2 scheme produces very accurate results even for

the coarse mesh. Indeed, the three-dimensional code uses only 2.5 mesh points per r in the longitudinal

direction. In the transverse direction the mesh steps are even three times bigger.

As the next example we use again the round collimator. Fig. 11 demonstrates the wake potential for the

collimator with parameters a = 30 mm, b = 2 mm, c = 50 mm, L = 200 mm and a Gaussian bunch with

RMS length r = 1 mm. Again the high accuracy of the suggested three-dimensional scheme can be seen.

Finally, in the last example we calculate the longitudinal wake potential for the fully three-dimensional
rectangular collimator shown in Fig. 6 on the right. Fig. 12 demonstrates the wake potential for the
. Comparison of the wake potentials obtained by different methods for the structure consisting of 20 TESLA cells excited by a

ian bunch with r = 1 mm. The solid line shows the reference solution obtained with the help of the scheme described in [15]. The

line describes the solution obtained by classical Yee�s scheme with mesh resolution of five mesh steps per r. The dotted line

es the solution obtained by Yee�s scheme with two times denser resolution in the longitudinal direction. The picture shows

ence of the reference result (solid line) with the results on the coarse mesh obtained from the 3D TE/TM code (gray points).



Fig. 11. Comparison of the wake potentials obtained by different methods for the round collimator excited by a Gaussian bunch with

r = 1 mm. The solid line shows the reference solution obtained with the help of the scheme described in [15]. The dashed line shows the

solution obtained by Yee�s scheme with a mesh resolution of five mesh steps on r. The dotted line describes the solution obtained by

Yee�s scheme with two times denser resolution. The picture shows coincidence of the reference result (solid line) with the results on the

coarse mesh obtained from the 3D TE/TM code (gray points).

Fig. 12. The left figure shows the longitudinal wake potential on the axis for rectangular (solid line) and circular (dashed lines)

collimators and a Gaussian bunch with r = 5 mm. On the right picture the energy gain for a test particle moving at the position s = r
behind the bunch centre is shown.
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collimator with parameters a = 30 mm, b = 5 mm, d = 20 mm, c = 50 mm, L = 200 mm and a Gaussian

bunch with RMS length r = 5 mm moving on the axis. Fig. 12 (left) compares the wake potential on the

axis for the rectangular (solid line) and round (dashed line) collimators. The round collimator has the same

geometric parameters and the round aperture with radius b = 5 mm. As well known, the wake potential of a

round collimator does not change in the transverse plane. Quite contrary, for the rectangular collimator a

variation of the wake potential in the transverse plane is expected. Indeed, it can be seen in Fig. 12 (right),

where the energy gain for a test particle moving at the position s = r behind the bunch centre is shown.
6. Conclusion

A new fully three-dimensional implicit scheme for the calculation of electromagnetic fields in the vicinity

of relativistic charged bunches was introduced. As shown by several numerical examples, the scheme is able

to model curved boundaries with high accuracy and allows for a non-deteriorating calculation of the field

solution for very long simulation times.
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To develop the new scheme we proceeded as follows: first we replaced the E/M splitting of Yee�s scheme

by the TE/TM splitting. This resulted in an implicit scheme requiring the solution of the Crank–Nicholson

equation for the two-dimensional scalar wave equation. In order to find an accurate economical scheme,

three different splitting methods were considered. It was shown that the ADI2 approach results in an accu-

rate scheme with moderate restriction on the time step. We then introduced the TE/TM scheme based on
the ADI2 method and studied several test examples. In order to avoid reduction of the maximal time step

and to obtain a scheme without dispersion in the longitudinal direction the conformal approach with non-

diagonal material matrices was exploited. It requires the application of iterative procedures. However,

already the first iteration produces an accurate and stable solution for all considered examples.

The high overall accuracy of the scheme was demonstrated for realistic collimator problems. The scheme

allows to use a moving mesh and thus to calculate wake fields of very short bunches for a range of prob-

lems, for which presently available 3D codes experience severe problems.
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